$\dot{m}_{g}C_{p,g}(T_{out,g} - T_{in,g}) = -\dot{m}_{l}L + \dot{m}_{cg}C_{p,cg}(T_{out,g} - T_{in,cg})$

 $(P^* - P_{sat}) = -\frac{L}{T(1/\rho_p - 1/\rho_q)} (T^* - T_{sat})$

Water Wash Injector Analysis via Simulation and Empirical Evaluation

K. J. Brown, W. Kalata, R. J. Schick Spraying Systems Co.

Presentation Topics

- Company Overview
- Problem Description
- Methodology
- Results
- Conclusion and next steps

Who is Spraying Systems Co.

- World Leader in Spray Technology
 - Privately owned (Established 1937)
 - Headquarters in Wheaton, IL
- Products
 - Spray nozzles, related systems and accessories
 - Over 120,000 standard and 180,000 non-standard engineered products

Access to Market

- Global/Regional engineering and manufacturing
- 85 local sales engineering offices around the world
- Value added
 - Recognized global brand for spray technologies
 - Quality, service, support, engineered solutions
 - Serve 50 major industrial markets

Spraying Systems Middle East

SSME Office

Dubai Silicon Oasis, Light Industrial Units, Office No. 07 P.O. Box 341187 Dubai, United Arab Emirates

Water Wash Background¹

Crude Unit Column Overhead – Corrosion

Water is usually injected in the overhead piping to:

- Help quench and scrub the overhead vapors
- Dilute acids formed
- Prevent any salts or acids from forming in the system

Water Wash Background²

- Even distribution of wash water increases the effectiveness of a water-wash system.
- Interaction of a spray plume in the environment determines the level of liquid/gas mixing and absorption effectiveness.
- Traditional methods rely of using simple Quills
 - Single/Dual Hole Design
 - Slot Design
- Often ineffective in areas where critical control is needed
- Introduction of Spray Nozzle Injectors significantly improves the process

Visualization

Water Wash Background

- Even distribution of wash water increases the effectiveness of a water-wash system.
- Interaction of a spray plume within a confined cross-flow environment controls the level of liquid gas mixing and absorption effectiveness.
- The primary focus of this study is to define the distribution of injected water wash downstream of the injection point.
- Modeling is used in environments that are difficult to access, validation is necessary to be sure injector recommendations are accurate and optimized.

Methodology

Validation process using experiments and modeling - used to evaluate spray performance of different nozzles.

- Experiments
 - Laser Sheet Imaging (LSI)
 - -- spray shape, size and distribution characteristics
 - Phase Doppler Interferometer (PDI)
 -- drop size, velocity, angle of trajectory and spray volume
 - Wind tunnel

Test data is input for Modeling as initial conditions

Modeling (CFD)

- -- spray simulation (custom spray injection methods)
- -- in situ data for engineering assessment in actual region

Empirical Setup

- Large capacity Wind Tunnel, Ambient air
- Modified Test Section
 - Ø40cm x 2.75m, with Optical access
- Nominally Uniform Airflow
 - Operated at 20m/s and 30m/s
- Injectors (Flow Rate = 19LPM)
 - Hollow cone 3/8BX-15
 - Full cone 3/8GA-15
 - Dual Full cone 1/4HH-6.5

Flow Conditions

- Flow Direction (injector relative to gas)
 - Co-current
 - Counter-current
- Gas Velocity
 - \uparrow from previous study
- Injector Type
 - Flow ↓ from previous study

Experimental Setup – Spray Distribution Acquisition

- Laser Sheet Imaging (LSI)
 - LaVision GmbH
- Orientation
 - Mounted at exit of wind tunnel
 - Vertical and Horizontal
 - 2D measurement of spray pattern
 - Time dependant fluctuations
- Light Intensity Spray uniformity
 - Mie Scattering

Spray Distribution – co-current

Spray Distribution – countercurrent

Experimental Setup – Drop Size Acquisition

- Phase Doppler Interferometer (PDI)
 - Artium Technologies Inc.
 - PDI-200MD
- PDI Orientation
 - Mounted at exit of wind tunnel
 - Vertical and Horizontal Traverse
 - y 2cm measurement resolution
 - z 6cm measurement resolution
- Drop Size Distribution
- Axial Velocity

Drop Size Impact¹

- Has major impact in increase process effectiveness
- Effectiveness is increased because
 - Greater Surface Area → increases contact area with gas stream
 - More Uniform Distribution across Duct/Vessel → increases interaction and uniformity of reaction

Drop Size Impact²

No. of	Diameter	Volume	Surface Area	Percentage		
Drops	(µm)	(m³)	(m²)	increase in		
				Surface Area		
1	500	6.54 x 10 ⁻¹¹	1.96 x 10 ⁻⁷			
120	100	6.54 x 10 ⁻¹¹	9.42 x 10 ⁻⁷	484%		

Heat/Mass Transfer & ~ So Chemical Reactions

Results – Drop Size at 20m/s

Dual Full cone (1/4HH-6.5)

HYDROCARBON PROCESSING

IRPC2015

www.HPIRPC.com

Results – Drop Size at 30m/s

Dual Full cone (1/4HH-6.5)

HYDROCARBON PROCESSING

IRPC2015

www.HPIRPC.com

Drop Size – Summary

co vs. counter-current

Run-off

Increasing run-off with countercurrent flow and decreasing gas velocity

Industry Guidelines

- Inadequate (or low) Water Wash can be worse than no Water Wash:
 - Many of the salt deposits encountered in refining processes are hygroscopic, hence inadequate water washing can lead to severe localized corrosion in certain circumstances
- At least 25% of water injected should remain as liquid water

Injector Types & Runoff

					J	J I								
		Case	1	2	3	4	5	6	7	8	9	10	11	12
Injector Type			HC	FC	2xFC	НС	FC	2xFC	НС	FC	2xFC	HC	FC	2xFC
Nozzle ID			3/8BX -15	3/8GA -15	1/4HH -6.5	3/8BX -15	3/8GA -15	3/8HH -6.5	3/8BX -15	3/8GA -15	1/4HH -6.5	3/8BX -15	3/8GA -15	3/8HH -6.5
Air Flow Conditions				co-curren	t		co-curren	t	cou	inter-curr	ent	COL	unter-curr	ent
Air Velocity	V	m/s	20	20	20	30	30	30	20	20	20	30	30	30
Operating Pressure	ΔΡ	bar	9.31	9.44	13.44	9.31	9.44	13.44	9.31	9.44	13.44	9.31	9.44	13.44
Flow Meter	Q_{TOTAL}	lpm	18.9	18.9	18.9	18.	Ideal	Carry	over	8.9	18.9	18.9	18.9	18.9
Runoff	Q _{TOTAL}	lpm	6.4	7.2	6.1	6.1	6.4		16.6	14.0	13.2	13.6	10.6	9.5
Runoff %		%	34	38	32	31	34	27	88	74	71	71	56	51

CFD Setup

Boundary Conditions

- Inlet: Constant Velocity
- **Outlet:** Constant Pressure
- Wall: Rigid, no slip, adiabatic

Model Selection

- k-ε Realizable Turbulence Model
- DPM for LaGrangian tracking of water droplets
- **Species Transport**

Mesh Considerations

- Dense near injection/orifice, course elsewhere
 - Approx. 2M cells

Nozzle Data Input

Based on empirical data acquired in laboratory.

- Specific functions are employed to customize nozzle's spray characteristics that cannot be matched with FLUENT's standard injection library
- Customized "Injection Creation" files are coded where large number of spray nozzles are used and improve accuracy of the simulations

Spray Visualization – DPM Conc. Spray Visualization – DPM Conc.

Drop Size (20m/s, co-current)

Drop Size (20m/s, countercurrent)

Spray Distribution (20m/s, Co-current)

Spray Distribution (20m/s, Counter-current)

Empirical Vs. Simulation

Distribution Comparison

Hollow cone (3/8BX-15) - 20 m/s Dual Full cone (1/4HH-6.5) - 20 m/s

Wall Boundary Conditions

Conclusions¹

Hollow cone

Less uniformity / Dispersion Quick attachment to wall Dependent on secondary shear Large Free Passage (No clogging)

Dual Full cone

Best Uniformity /Dispersion Greater distance to wall attachment Longer adherence to wall Smallest Free Passage

Conclusions²

Co-Current Flow Conditions Less uniformity / Dispersion Greater entrainment of full volume of spray Less evidence of secondary breakup appears

Counter-Current Flow Conditions Better uniformity / Dispersion Quick wall attachment Entrainment/small particles, large amount of run-off

- Secondary breakup estimation with & without transient CFD
 - Additional measurement locations (from injector)
- Wall interference studies
- User feedback
 - Corrosion and de-salting effectiveness

Thank You